

Year 1 National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract one-digit and two-digit numbers to 20 , including zero (Year 1).
- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones, a two-digit number and tens, 2 two-digit numbers; add 3 onedigit numbers (Year 2).
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot (Year 2).
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equal (=) signs.
- Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems, such as $7=\square-9$.
- Solve problems with addition and subtraction:
- Using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- Applying their increasing knowledge of mental and written methods

Year 1 Addition

Year 1 Addition

Year 1 Subtraction

Year 1 Subtraction

Subtracting multiples of ten Using the vocabulary of 1 ten, 2 tens, 3 tens etc. alongside 10, 20, 30 is important as pupils need to understand that it is a ten not a one that is being taken away.		$60-20$	$38-10=28$ (7) ร\% $38-10=$ \square
Column method with regrouping This example shows how pupils should work practically when being introduced to this method. There is no formal recording in columns in Year 1 but this practical work will prepare pupils for formal methods in Year 2. See additional guidance on unit pages to support with this method.	rens 2terna	ernes $=0$ crner \square $\square 5$ E E E E E E thes En $x \times=$ 블 $x \times x=$	

Year 1 National Curriculum objectives linked to multiplication and division

Year 1 Multiplication

Strategy \& guidance	CPA
Slip counting in multiples of $\mathbf{2 , 5}$, 10 from zero The representation for the amount of groups supports pupils' understanding of the written equation. So two groups of 2 are 2, 4 . Or five groups of 2 are 2, 4, 6, 8, 10 . Count the groups as pupils are skip counting. Number lines can be used in the same way as the bead string. Pupils can use their fingers as they are skip counting.	$4 \times 5=20$
Solve multiplications using repeated addition This strategy helps pupils make a clear link between multiplication and division as well as exemplifying the 'repeated addition' structure for multiplication. It is a natural progression from the previous 'count all' strategy as pupils can be encouraged to 'count on'. However, as number bonds knowledge grows, pupils should rely more on these important facts to calculate efficiently.	$3 \times 3=3+3+3$ $3+3+3$ How many apoled are there allogether? $3+3+3=9$

These objectives are explicitly covered through the strategies outlined in this document:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Year 1 Division

Strategy \& guidance	CPA
Sharing objects into groups	
Pupils should become familiar with division equations through working practically.	
The division symbol is not formally taught at this stage.	

Year 2 National Curriculum objectives linked to addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; 2 two-digit numbers; adding three onedigit numbers.
- Add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds (Year 3).
- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100.
- Find 10 or 100 more or less than a given number (Year 3).
- Show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot.
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
- Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction (Year 3).

The following objectives should be planned for lessons where new strategies

 are being introduced and developed:- Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; apply increasing knowledge of mental and w ritten methods.
- Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction.

Year 2 Addition

Year 2 Addition

Strategy \& guidance	CPA
Using known facts to create derived facts Dienes blocks should be used alongside pictorial and abstract representations when introducing this strategy.	
Partitioning one number, then adding tens and ones Pupils can choose themselves which of the numbers they wish to partition. Pupils will begin to see when this method is more efficient than adding tens and taking away the extra ones, as shown.	

Strategy \& guidance	CPA
Make ten strategy How pupils choose to apply this strategy is up to them; however, the focus should always be on efficiency. It relies on an understanding that numbers can be partitioned in different ways in order to easily make a multiple of ten.	$\begin{array}{r} 38+15= \\ 1 / 13 \\ 20 \end{array}$
Partitioning to add without regrouping As in Year 1, this is a mental strategy rather than a formal written method. Pupils use the Dienes blocks (and later, images) to represent 3digit numbers but do not record a formal written method if there is no regrouping.	
Column method with regrouping Dienes blocks should be used alongside the pictorial representations; they can be placed on the place value grid before pupils make pictorial representations. As in Year 1, the focus for the column method is to develop a strong understanding of place value.	

Year 2 Subtraction

Strategy \& guidance	CPA
Counting back in multiples of ten and one hundred	
Using known number facts to create derived facts Dienes blocks should be used alongside pictorial and abstract representations when introducing this strategy, encouraging pupils to apply their knowledge of number bonds to add multiples of ten and 100.	回
Subtracting tens and ones Pupils must be taught to partition the second number for this strategy as partitioning both numbers can lead to errors if regrouping is required.	

Year 2 Subtraction

Year 2 National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Recall and use multiplication and division facts for the 3 and 4 multiplication tables (Year 3).
- Show that multiplication of two numbers can be done in any order (commutative) but division of one number by another cannot.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equal ($=$) signs.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in context.

Year 2 Multiplication

Year 2 Multiplication
Strategy \& guidance
Arrays to represent
multiplication
equations
Concrete manipulatives
and images of familiar
objects begin to be
organised into arrays
and, later, are shown
alongside dot arrays. It
is important to discuss
with pupils how arrays
can be useful.

Pupils begin to
understand
multiplication in a more
abstract fashion,
applying their ship
counting skills to identify
the multiples of the 2x, $5 x$
and rox tables.

The relationship between
multiplication and
division also begins to be
demonstrated.

Multiplication is
commutative

Pupils should understand
that an array and, later,
bar models can represent
different equations and
that, as multiplication is
commutative, the order
of the multiplication does
not affect the answer.

Year 2 Division

